If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-18n+52=4
We move all terms to the left:
n^2-18n+52-(4)=0
We add all the numbers together, and all the variables
n^2-18n+48=0
a = 1; b = -18; c = +48;
Δ = b2-4ac
Δ = -182-4·1·48
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{33}}{2*1}=\frac{18-2\sqrt{33}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{33}}{2*1}=\frac{18+2\sqrt{33}}{2} $
| 5k=65k=11,12,13,14 | | 36=6(y+2) | | G(-1)=x2-2 | | x(3)+x(2)-6x=0 | | 2m-13=^8m+27 | | 2^-2n=1/8 | | 6x-10x-11=8x=2x+29 | | 2m-3=8m+27 | | 3=7/(7+x) | | 5.6=l+4.09l=0.7,0.97,1.51,9.69 | | 5(3x+2)-5=50 | | -4•5^2x-1=-128 | | 17/(3x)=16 | | /2x=12 | | 0.12x+64=0.13x+49 | | B(50x)=35.5-0.06x | | 4x^2-123x=0 | | 202=24-x | | B(x)=35.5-0.06 | | 5x*12=180 | | m=3(-6,-23) | | 5xx12=180 | | 8-x-3=2x-10 | | |7x|+2=37 | | 9^3n=3^3 | | 44=−4m−8 | | 3/2x=5/x-2 | | m/7=47 | | v/10+320=348 | | 12+x/3=2/6 | | 4m–8=20 | | (4x-20)=x |